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PURPOSE

The purpose of this contract is to construct coherent
far infrared (Su — 1000y) radiation generators, To fulfill this
aim, solid and gaseous media suitable for maser action will
be investigated. Instrumentation to study the far infrared
region of the spectrum will be completed. A study of the
lattice spectra of solid maser hosts will be carried out and
the energy levels of impurities in the various hosts will be

determined.
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ABSTRACT

In this report a partial account is given of the instru-
mentation required for the study of optical properties of pos-
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sible far infrared (5p — 1000y) coherent radiation generators.
The operation of a laboratory-built Michaelson interferometer
is described together with a Perkin-Elmer No. 301 spectro-

meter and the associated cryogenic equipment. Preliminary
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study of the lattice absorption spectrum of CaWO4, CaMoO4
and PbMoO  is presented. A possible 5u optical maser tran-
sition in the CaWO4:Nd5’ system is evaluated.

IR

PUBLICATIONS, LECTURES, REPORTS, AND CONFERENCES

During the report period no publications or reports were

issued, and no lectures or conferences were attended,
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FACTUAL DATA

I. INTRODUCTION

Since the announcement of the first optical maser! in 1960 maser action has been achieved
in a large number of systems employing insulating solids, gases, glasses, semiconductors, and
organic chelates as the medium. The longest infrared maser frequency was reported? at 18,8y
using a ncon gas system. Microwave masers on the long wave length end of the spectrum have
been operated since 1954, and the highest frequency microwave mascr reported to dated is at
75 kMc using iron-doped rutile as the active medium. Between these two regions, however, lies
a large gap, most of the “'far infrared” (from Su to 1000u) where until now there are no oscillators
available. This situation is particularly inadequate since the very weak thermal sources combined

with insensitive detectors make this region of the spectrum very difficult to study.

The object of the present contract is to investigate the optical properties of materials
(solids and gases) in the far infrared region of the spectrum to find suitable systems for the con-

struction of maser oscillators.

The present report describes the effort of the first three months that was expended in three

arecas:

1. The construction of the instrumentation necessary for the study of the
far infrared. This involves the building of a Michaclson interfcrometer
spectrometer to be used in the 150y to 1000 region, setting up a
Perkin-Elmer 301 double-becam-grating spectrometer to be used in the
154 to 200u region, and assembly of cryogenic equipment suitable
for optical studics in the above regions of the spectrum.

2. A ncar infrared study of some of the insulating solid host lactices
that will be used in the maser material scarch.

3. A study of a possible maser system using the Nd** as the active
ion with expected maser output at Sp.
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Il. EXPERIMENTAL DETAILS

A. MICHAELSON INTERFEROMETER SPECTROMETER

Spectroscopy beyond Su could be called *‘intensity-limited spectroscopy’” since the limit of
spectral resolution is not determined by the dispersing elements (prisms or gratings), but by the
available source intensity. In such cases a spectrograph is preferable to a spectrometer. Where
there are no photographic films available, the same gain in integrating time over a scanning spectro-

meter can be achieved with a Michaelson interferometer spectrometer.

The Michaelson interferometry method which allows simultaneous observation of all parts of
the spectrum is called the Fourier transform method. The method has two basic advantages. First,
the instrument has cylindrical symmetry, and circular slits can be used with more efficient use of
the optical elements; but more important, comparing the interferometer to a scanning device, both
with the same total observation time T, if the scanning spectrometer covered M spectral elements
= \/-;—using the Fourier

in time T, there would be a gain in the signal-to-noise ratio of 7

transform method.

A schematic diagram of the Michaelson interferometer that we have constructed is shown in
Fig. 1. A parallel beam of light from a source S of spectral distribution B(v) is divided at the

8(v)

: imax.

G 1(8,)

Fig. 1. Schematic diagram of a Michaelson interferometer spectro-
meter. (S is the source of brightness B(v), D is the semireflecting
surface, M, is the fixed mirror, M, is the moving mirror, A7 is the
image of M, in D, 5, is the path difference and G is the detector.)
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semireflecting surface D into two parts. These are reflected at the plane mirrors M, and M,,
respectively, retuned to D and recombined at the surface of D after having traversed paths dif-
fering by an amount 8. The intensity 1(5,) falling on the detector G is recorded as the mirror M,
is moved uniformly; that is, the path-difference 5, is changed linearly with time. If we consider
a monochromatic point source B(v,), the interferogram will be

B(v,)
4

ns,) = (1+ cos 2mv,5,) " (H

That is, aregular cosine function as a result of the constructive and destructive interference be-

tween the two beams as the path difference 8 is varied. Or for an arbitrary frequency distribution

B(v)the 8, dependent part of the interferogram
8.} = 174 [B(v)cos 2mvb,_ dv - T | B(v)] (2)

which is the Fourier cosine transform of the spectrum under study. The Fourier method of spectro-
scopy using a Michaelson interferometer then consists of recording the interferogram 1(5 ) and
performing a Fourier transformation using computers to obtain the intensity distribution Bfv) of
the frequency spectrum under investigation.

The detailed theory of the Fourier transform method of spectroscopy has been worked out in
great detail.4-7 Only the two major factors will be outlined here that determine the limit of resolu-
tion of the method. The first difficulty stems from the fact that the source has a finite extent Q,
and while the path difference for the axial ray is _, the path difierence for the rays at an angle i
(Fig. 1) is different. If we assume that there is a distribution of path differences D(5,8,), then the

actual recorded interferogram will not be #(8_) as given in Eq. (2) but another function A(5,) where

A(8,) = constant [ (8, 8, )r(5,) db, = 18,) D (5,). 3

While the effect of Eq.(3) can be minimized by using sufficiently small slits, there :s a more funda-
mental limitation on the resolution. Namely, the interferogram is not defined for all values

-~ <8 <ow,butonly in alimited range - L. < 6, < L. where L is the maximum path difference of

scan. That is, the final interferogram is I(8) =~ A(8,) E(8,) where E(8,) is a delta function of unit
height in the interval from - L to + L. Therefore, the Fourier inverse of I(3_) will not give the true

B(v) but a resolution-limited B “(v)

B’(v)=TIN8 ) =TIn5,)1 T D161 T [E(5,)]) 9
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Neglecting for the moment the effect of the extended slit (T [D(5,) ] = 1), the calculated spectrum
is the convolution of the true spectrum, B(v), with the Fourier transform, f(v) of E(3,). The function
f(v) is given by the equation

sin 2nvl

fiv) = 2L L (5)

and is called the instrumental line shape function (Fig. 2). The true spectrum B(v) is scanned by
the instrumental line shape function in analogy to the way that a grating spectrometer scans the

€ (3,)
(a)
-L 0 LS
()
--2L
b)
N\ N\
I 4 0 M A ) v

i 1
2L L
Fig. 2. a. The natural weighting function due to
limited travel L of mirror M,,
b. The natural instrumental line shape
junction.

spectrum with a particular line shape. The limit of resolution in terms of maximum travel can also
be deduced from Fig. 2. For a point source using Rayleigh’s criterion (two frequencies separated
by Av can be resolved if the maximum of one in the Fourier pattemn of Fig. 2 coincides with the
minimum of the other) the limit of resolution is Av = 3/8L when an extended source is used, using
a slit that gives optimum compromise between luminosity and resolution? -r—°2—'£— =T the

actual limit of resolution is Av = 1/L.

Figure 3 shows a photograph of the actual spectrometer that we constructed. The collimating
system uses 3-in. diameter /4 off axis parabolic mirrors, and mirror M, can be scanned 10 cm



Fig. 3. Photograph of Michaelson interferometer. The collimating
system employs 3-in. aperture { 4 off axis paraboloids.

(1. 20 ¢m) giving a limit of resolution of 0.05 em”). The instrument was tested using semisilvered
quartz beam splitters and a continuously operating CaF ,:Dy 2" maser at 2,36 as the source. The

interferogram is shown on Fig. 4. Work is in progress to enclose the interferometer in a vacuum

JAVAVAVAVS
I(3,)

L
Vo=2.3584
CaFy;Dy2* maseRr

Y

t

Fig. 4. Interferogram of a 2.36; CaF ,:Dy?* optical maser lire.
4 8 I 21} P

chamber and to extend the operation to the far infrared range of 100) to 10004 using stretched mylar

film as a beam splitter, Details of the numerical Fourier transformation and the experimental evalu-

ation of the instrument function will be given in the nexe quarterly report.

o o
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B. PERKIN-ELMER NO. 301 GRATING SPECTROMETER

A Perkin-Elmer No. 301 double-beam-grating spectrometer was installed and operated covering
the range from 154 1> 200u. A schematic diagram of the instrument is shown in Fig. 5. To cover the

BEAM D M22
SAMPLE COMBINING :
SOURCE AREA AREA AREA XL
: S DETECTOR
' I M
Fi M7
HOPPERSE
M6
MRy ' M/ ws
M3 . Mi2
M6 e\
. CHOPPER ur F2 F3
-1 ma
M2
N
J v LJ [ sfila )

MONOCHROMATOR
Fig. 5. Schematic diagram of the Perkin-Elmer No. 30! grating spectrometer.

above region the instrument uses four interchangeable gratings ranging from 40 lines/mm to 8
lines/mm. We believe that with the use of a 4 lines/mm grating the useful range of the spectro-
meter can be extended to 300u. The spectrometer can be used in both single- and double-beam
operation for reflection absorption and emission spectra studies and the intensity-limited resolu-
tion is about 1 cm-1. Examples of spectra taken on this instrument are shown in Figs. 6, 7, 8 and
10.

C. CRYOGENIC EQUIPMENT

A liquid helium dewar has been constructed for the use in the far infrared optical studies.
Provisions are made both for cold finger contact cooling and for immersing the specimen in the
liquid coolant. The room temperature vacuum seal of the NaCl, CsBr, quartz and mylar windows
is achieved by using rubber and Teflon O-ring seals. The sealing of the windows at helium tem-
perature is done in two steps: 1. By using indium and gold O-rings for the quartz windows. .

2. The other window materials are araldited to a 3-mil thick copper ring that takes up the dif-
ference in contraction between the window and the metal dewar. and the copper ring is soft-
soldered to the metal body.




T A TR

At

Pt o SR

T st i RN NN ewad o

.

BN N I ey e

. LATTICE ABSORPTION EDGE OF MASER HOST MATERIALS

In the construction of far infrared solid-state masers the greatest difficulty will be to find
host materials with windows in the lattice absorption bands where the host absorption losses are
not too great to prevent maser action. Since detailed study of the lattice spectrum for most solid-
state maser hosts is not available we have started a compilation of the infrared absorption and
reflection spectra of single crystals of these hosts.

Figure 6 shows the near infrared absorption edge of CaWQ, as a function of temperature.
It is interesting to note that after the absorption band at Sy there is a transmission window at
10u. We believe that the 5u absorption band corresponds to a moleculardike vibrational spectrum
due to the vibrational modes of the WO, complex. The CaWO, belongs to the Cm6 point group.
In the structure the Ca atoms have a large bond distance to the WO, and it is reasonable to assume
100

ol |

[ ]

TO
. 60
S0+

40

X TRANSMITTANCE
[ 3
s 8
—

2 R P
2000 1800 1600 1400 1200 1000 000

Fig. 6. The near infrared absorption spectrum
of CaWO  at different temperatures.
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that the WO, complex can be considered as a fairly isolated system. The local symmetry of the
WO, group is S and the 3N - 6 = 9 modes of vibration are expected to break down into A and

E + 2T, vibrations. Of these vibrations the E and one of the T, are expected to be infrared active.
At low temperatures one can detect considerable structure on the 5y absorption band of Fig. 6.

The different components may be due to the second, third or fourth overtones of the infrared
active vibrational modes. A more affirmative identification will have to await more quantitative
calculations of the vibrational pattern. The host absorption of CaMoO; and PbMoO, in Fig. 7 is
very similar to that of the CaWO,. This is not surprising since the MoO , complex is very similar
in all aspects to the WO, including the reduced mass.

\ Cawo,

\ CaMo O,

«— RELATIVE ABSORPTION INTENSITY

\ PbMo O.

j—

1 1
1000 1600 1400 _, 1200 1000
«— FREQUENCY {CM )

-

Fig. 7. The near infrared absorption spectra of CaWO,
CaMoO ,,and PbMoO at liquid nitrogen temperature.



A reflection spectra of the reststrablen frequencies of the CaWO, host is shown in Fig. 8 in
the 20u - 50y range. An analysis of the lattice modes will be given in the next quarterly report.
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Fig. 8. The reststrablen reflection spectra of CaWO
' in the 20y to 50y range.
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IV. THE 5. MASER TRANSITION IN Nd**

One of the most suitable active ions for solid-state maser systems is the Nd3+ ion. The
lowest spin orbit multiplet is the 41 multiplet (Fig. 9), and the optical maser transition is between

the ‘ijz level and the 41, ,, levels of the lowest multiplet. This transition occurs at the

Ne>' sYSTEM
PUMPING
LEVELS
SF,
%
9500c  OPTICAL MASER
‘xq
4
41'%
\ ¥4 j-
41 —
1t
Y
2000 e a;f,,"g-"‘,eg
« g
Yo =

Fig. 9. Energy levels of the Nd3* system in solid hosts.

9500 cm”! region (1.06y) and terminates 2000 cm-! above ground state on the 41,, , level. There
exists a possibility for further four-level maser action between the 41,,,, state and a crystal field
split component of the ground I, ,, state. The fluorescence spectrum of CaW0,:Nd3* is shown in
Fig. 10a. Emission from the F;,, level to the lowest three components of the 41 spin-orbit
maltiplet can be seen. The absorption spectrum corresponding to the Iy, to 41,,,, transition
_can be seen in Fig. 10b. The 4/-4f absorption just misses the Ca¥WO, abs;rption at Su, and since
the resonance transition is at 2000 cm™!, part of the possible 41, 5 to 4I,,, emission terminating

10
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1 i |
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Fig. 10. a. The fluorescence spectrum of
CaWO0 ,:Nd3* ar liquid nitrog=n
temperature.

b. The absorption spectrum of
CaWO ;:Nd?* corresponding to
the ¥1,,, .. 41,,,, transition.

on the crystal field split components of the I, ,, state would be buried in this CaWO  absorption.
Efforts to observe emission in the CaWO0 :Nd3* system at 2000 cm™! were unsuccessful. This is
not too surprising since due to the nearness of the lartice absorption the nonradiative decay of
the 41, , state must be very fast. A further actempt to observe emission will still be made while
the "1“/2 state is pumped by the optical maser transition at liquid helium temperature. Further
more, even if this transiticn will not prove suitable in the CaWO, host, the Nd3* system will have

to be tried in other hosts, where the lattice absorption edge is further out in the infrared.

11



CONCLUSIONS

The periormance of the laboratory-constructed Michaelson interferometer spectrometer was
evaluated and was found satisfactory. A Perkin-Elmer No. 301 spectrometer was installed and
tested by studying the absorption spectra and reflection spectra of solid host materials for masers.
The possibilities of a Sy maser transition in the CaW04:Nd3‘ system were evaluated.
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PROGRAM FOR NEXT INTERVAL

1. Extend the operation of the Michaelson interferometer spectrometer to the

far infrared region of the spectrum,

2. Determine the near infrared lattice absorption edge of the alkaline earth
halide and mixed halide systems and continue the measurements of the

reststrablen spectra of maser hosts.

3. Attempt maser operation in the 41, , + 4, ,, transition of Nd3* in

various hosts.

4. When the far-infrared instrumentation is completed, search for maser action
in suitable systems starting with CaFZ:Dy2+ system at 24 cm”!,

IDENTIFICATION OF KEY PERSONNEL

The following members of the technical staff have contributed to the contract during the

past work period:

A. Akselrad, Member of Technical Staff 480 hours
Z. J. Kiss, Project Engineer 200 hours

13
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